Monday, 6 November 2017

Vorteile Der Einfachen Gleitenden Methode


Gleitende Durchschnitte Der gleitende Durchschnitt (häufig verkürzt zu ma in unserer Forschung) ist einer der populärsten Indikatoren und wird von technischen Analytikern für eine Vielzahl von Aufgaben verwendet: um Bereiche der kurzfristigen Unterstützungsbeständigkeit zu identifizieren, um den gegenwärtigen Trend als eine Komponente in vielen zu bestimmen Andere Indikatoren wie die MACD oder Bollinger-Bänder. Die Hauptvorteile von gleitenden Durchschnitten sind zum einen, dass sie die Daten glätten und so ein klareres Bild des aktuellen Trends liefern und zweitens, dass ma. a. Signale können eine genaue Antwort geben, was der Trend ist. Der Hauptnachteil ist, dass sie eher hinter den Vorhersageindikatoren zurückbleiben, aber dies sollte kein Problem für längerfristige Investoren sein. Es gibt zwei Hauptformen des gleitenden Durchschnitts: Der einfache gleitende Durchschnitt berechnet (wie der Name schon sagt) den Durchschnittspreis über einen bestimmten fahrenden Zeitraum. Zum Beispiel wird ein 20 Tage einfacher gleitender Durchschnitt den durchschnittlichen mittleren Preis aus den letzten zwanzig Tagen Schlusskurse und so weiter zu berechnen. Der exponentielle gleitende Durchschnitt (ema) schätzt auch die letzten x Tage, schließt aber den jüngeren Preisen ein größeres Gewicht zu, wodurch es empfindlicher auf aktuelle Preisaktionen reagiert und somit den Lag-Effekt reduziert. Bestimmen der kurzzeitigen Unterstützung und des Widerstands Die folgende Tabelle zeigt den Nasdaq 100 Index mit einem 50 Tage exponentiellen gleitenden Durchschnitt (ema). Der Index macht höhere Höchstwerte und höhere Tiefststände in einer konsistenten Weise durch die meisten von 2003 und die 50-Tage-Ema lieferte einen guten Hinweis darauf, wo diese Tröge wären, d. h. Man könnte natürlich versuchen, einen etwas längeren Zeitraum gleitenden Durchschnitt, um sicherzustellen, dass alle Täler blieben über dem Durchschnitt aber aus Erfahrung haben wir festgestellt, dass die 50 Tage ema den Job gut macht. Erzeugen von Handelssignalen Die Crossover-Methode erzeugt ein relativ zuverlässiges automatisches Handelssignal, wenn ein kürzeres durchschnittliches Zeitlimit über einem längerfristigen Durchschnitt liegt. Im Beispiel unten haben wir 20 und 50 Tage Emas für den Nasdaq 100 Index gezeigt. Die Crossover-Methode würde den Index kaufen, wenn die empfindlichere 20-Tage-Ema (grüne Linie) über die längerfristige 50-Tage-Ema (rote Linie) kreuzt und den Index verkaufen würde, wenn die 20-Tage-Ema unterhalb der 50-Tage-Ema kreuzt. Wir haben mit blauen Pfeilen markiert und mit roten Pfeilen verkauft, diese Faustregel hätte uns von etwa 1000 bis etwa 1500 auf dem Markt gehalten. Der Zugang zu unseren Forschungsdiensten erfordert die Annahme unserer Geschäftsbedingungen und unterliegt unserem Haftungsausschluss. Lesen Sie unsere Datenschutzbestimmungen. Der US Stock Service und der US Market Timing Service werden von Chartcraft Inc (Chartcraft) zur Verfügung gestellt, die kein reguliertes Geschäft ist. Alle anderen Dienstleistungen werden von Stockcube Research Limited (Stockcube) zur Verfügung gestellt, die von der britischen Financial Conduct Authority zugelassen und reguliert wird. Chartcraft und Stockcube sind hundertprozentig im Besitz von Stockcube Ltd., einer britischen Gesellschaft, die in England registriert ist. Die 7 Fallstricke der gleitenden Durchschnittswerte Ein gleitender Durchschnitt ist der durchschnittliche Preis eines Wertpapiers über einen bestimmten Zeitraum. Analysten verwenden häufig gleitende Durchschnitte als analytisches Werkzeug, um es einfacher zu machen, Markttrends zu verfolgen, während sich die Wertpapiere nach oben und unten bewegen. Gleitende Mittelwerte können Trends aufstellen und Impulse messen. Daher können sie verwendet werden, um anzugeben, wann ein Anleger ein bestimmtes Wertpapier kaufen oder verkaufen sollte. Investoren können auch gleitende Durchschnitte verwenden, um Unterstützungs - oder Widerstandspunkte zu identifizieren, um zu messen, wann die Preise die Richtung ändern werden. Durch das Studium historischer Handelsbereiche werden Unterstützungs - und Widerstandspunkte etabliert, wo der Preis einer Sicherheit ihren Aufwärts - oder Abwärtstrend in der Vergangenheit umkehrte. Diese Punkte werden dann verwendet, um Entscheidungen zu treffen, zu kaufen oder zu verkaufen. Leider sind bewegte Durchschnitte nicht perfekte Werkzeuge für die Festlegung von Trends und sie präsentieren viele subtile, aber erhebliche Risiken für Investoren. Darüber hinaus gelten die gleitenden Durchschnitte nicht für alle Arten von Unternehmen und Branchen. Einige der wichtigsten Nachteile der gleitenden Mittelwerte sind: 1. Gleitende Mittelwerte ziehen Trends aus vergangenen Informationen. Sie berücksichtigen nicht die Änderungen, die eine zukünftige Performance der Sicherheit beeinflussen können, wie neue Wettbewerber, eine höhere oder niedrigere Nachfrage nach Produkten in der Branche und Veränderungen in der Managementstruktur des Unternehmens. 2. Im Idealfall wird ein gleitender Durchschnitt eine konsistente Änderung des Preises eines Wertpapiers im Laufe der Zeit zeigen. Leider bewegte Durchschnitte nicht für alle Firmen arbeiten, besonders für diejenigen in sehr volatilen Industrien oder diejenigen, die stark durch aktuelle Ereignisse beeinflusst werden. Dies gilt insbesondere für die Ölindustrie und die hochspekulativen Industrien im Allgemeinen. 3. Gleitende Mittelwerte können über einen Zeitraum verteilt werden. Dies kann jedoch problematisch sein, da sich der allgemeine Trend je nach eingestelltem Zeitraum erheblich ändern kann. Kürzere Zeitrahmen haben mehr Volatilität, während längere Zeitrahmen weniger Volatilität aufweisen, aber keine neuen Marktveränderungen berücksichtigen. Investoren müssen vorsichtig sein, welchen Zeitrahmen sie wählen, um sicherzustellen, dass der Trend klar und relevant ist. 4. Eine laufende Debatte ist, ob in den letzten Tagen des Berichtszeitraums mehr Wert gelegt werden sollte oder nicht. Viele glauben, dass die jüngsten Daten besser die Richtung widerspiegeln, in der sich die Sicherheit bewegt, während andere das Gefühl haben, dass einige Tage mehr Gewicht als andere, den Trend falsch verzerrt. Anleger, die unterschiedliche Methoden zur Berechnung der Durchschnittswerte verwenden, können ganz andere Trends ziehen. (Erfahren Sie mehr in Simple vs Exponential Moving Averages.) 5. Viele Investoren argumentieren, dass die technische Analyse eine sinnlose Art ist, das Marktverhalten vorherzusagen. Sie sagen, der Markt habe kein Gedächtnis und die Vergangenheit ist kein Indikator für die Zukunft. Darüber hinaus gibt es erhebliche Forschung, um dies zu unterstützen. Zum Beispiel führte Roy Nersesian eine Studie mit fünf verschiedenen Strategien mit gleitenden Durchschnitten. Die Erfolgsquote der einzelnen Strategien variierte zwischen 37 und 66. Diese Forschung deutet darauf hin, dass bewegte Durchschnitte nur Ergebnisse Ergebnisse über die Hälfte der Zeit, die mit ihnen einen riskanten Vorschlag für eine wirksame Timing der Börse könnte. 6. Wertpapiere weisen häufig ein zyklisches Verhaltensmuster auf. Dies gilt auch für Versorgungsunternehmen, die im laufenden Jahr eine stabile Nachfrage nach ihrem Produkt aufweisen, aber starke saisonale Veränderungen erfahren. Obwohl gleitende Durchschnitte können dazu beitragen, glätten diese Trends, können sie auch die Tatsache, dass die Sicherheit tendiert in einem oszillierenden Muster zu verbergen. (Weitere Informationen finden Sie unter Halten Sie ein Auge auf Momentum.) 7. Der Zweck jeder Tendenz ist vorherzusagen, wo der Preis eines Wertpapiers in der Zukunft sein wird. Wenn eine Sicherheit ist nicht in beide Richtungen Trend, es bietet keine Möglichkeit, von entweder Kauf oder Leerverkäufe profitieren. Der einzige Weg, einen Investor in der Lage zu profitieren wäre, um eine anspruchsvolle, Optionen-basierte Strategie, die auf den Preis verbleibenden stetig zu implementieren. Die untere Linie Die gleitenden Durchschnitte wurden von vielen als ein wertvolles analytisches Werkzeug angesehen, aber für jedes Werkzeug, das wirksam ist, müssen Sie zuerst seine Funktion verstehen, wann man es benutzt und wann es nicht benutzt wird. Die hier angesprochenen Risiken deuten darauf hin, dass es sich bei den gleitenden Durchschnittswerten nicht um ein wirksames Instrument wie etwa bei der Verwendung mit volatilen Wertpapieren handelte und dass sie bestimmte wichtige statistische Informationen wie zyklische Muster übersehen können. Es ist auch fraglich, wie effektive gleitende Durchschnitte für eine genaue Angabe der Preisentwicklung sind. Angesichts der Nachteile, gleitende Mittelwerte kann ein Werkzeug am besten in Verbindung mit anderen verwendet werden. Am Ende wird die persönliche Erfahrung der ultimative Indikator dafür, wie effektiv sie wirklich für Ihr Portfolio sind. (Mehr dazu finden Sie unter Do Adaptive Moving Averages zu besseren Ergebnissen führen) 6.2 Gleitende Mittelwerte ma 40 elecales, order 5 41 In der zweiten Spalte dieser Tabelle wird ein gleitender Durchschnitt der Ordnung 5 angezeigt, der eine Schätzung des Trendzyklus liefert. Der erste Wert in dieser Spalte ist der Durchschnitt der ersten fünf Beobachtungen (1989-1993) der zweite Wert in der 5-MA-Spalte ist der Durchschnitt der Werte 1990-1994 und so weiter. Jeder Wert in der Spalte 5-MA ist der Mittelwert der Beobachtungen in den fünf Jahren, die auf das entsprechende Jahr zentriert sind. Es gibt keine Werte für die ersten zwei Jahre oder die letzten zwei Jahre, weil wir nicht zwei Beobachtungen auf beiden Seiten haben. In der obigen Formel enthält Spalte 5-MA die Werte von Hut mit k2. Um zu sehen, wie die Trend-Schätzung aussieht, stellen wir sie zusammen mit den Originaldaten in Abbildung 6.7 dar. Grundstück 40 elecsales, HauptsacheResidential Elektrizität salesquot, ylab quotGWhquot. Xlab quotYearquot 41 Zeilen 40 ma 40 elecales, 5 41. col quotredquot 41 Beachten Sie, wie der Trend (in rot) glatter als die ursprünglichen Daten ist und erfasst die Hauptbewegung der Zeitreihe ohne alle geringfügigen Schwankungen. Das Verfahren mit gleitendem Mittel erlaubt keine Abschätzungen von T, wobei t nahe den Enden der Reihe ist, so daß sich die rote Linie nicht zu den Kanten des Graphen beiderseits erstreckt. Später werden wir anspruchsvollere Methoden der Trend-Zyklus-Schätzung verwenden, die Schätzungen nahe den Endpunkten erlauben. Die Reihenfolge des gleitenden Mittelwerts bestimmt die Glätte der Tendenzschätzung. Im Allgemeinen bedeutet eine größere Ordnung eine glattere Kurve. Die folgende Grafik zeigt die Auswirkung der Veränderung der Reihenfolge des gleitenden Durchschnitts für die privaten Stromverkaufsdaten. Einfache gleitende Mittelwerte wie diese sind meist ungerade (z. B. 3, 5, 7 usw.). Das ist also symmetrisch: In einem gleitenden Durchschnitt der Ordnung m2k1 gibt es k frühere Beobachtungen, k spätere Beobachtungen und die mittlere Beobachtung Die gemittelt werden. Aber wenn m gerade war, wäre es nicht mehr symmetrisch. Gleitende Mittelwerte der gleitenden Mittelwerte Es ist möglich, einen gleitenden Durchschnitt auf einen gleitenden Durchschnitt anzuwenden. Ein Grund hierfür besteht darin, einen gleitenden Durchschnitt gleichmäßig symmetrisch zu machen. Zum Beispiel könnten wir einen gleitenden Durchschnitt der Ordnung 4 nehmen und dann einen anderen gleitenden Durchschnitt der Ordnung 2 auf die Ergebnisse anwenden. In Tabelle 6.2 wurde dies für die ersten Jahre der australischen vierteljährlichen Bierproduktionsdaten durchgeführt. Beer2 lt - fenster 40 ausbeer, start 1992 41 ma4 lt - ma 40 beer2, bestellen 4. center FALSE 41 ma2x4 lt - ma 40 beer2, bestellen 4. center TRUE 41 Die Notation 2times4-MA in der letzten Spalte bedeutet ein 4-MA Gefolgt von einem 2-MA. Die Werte in der letzten Spalte werden durch einen gleitenden Durchschnitt der Ordnung 2 der Werte in der vorhergehenden Spalte erhalten. Beispielsweise sind die ersten beiden Werte in der 4-MA-Säule 451,2 (443410420532) 4 und 448,8 (410420532433) 4. Der erste Wert in der 2 × 4-MA-Säule ist der Durchschnitt dieser beiden: 450,0 (451.2448.8) 2. Wenn ein 2-MA einem gleitenden Durchschnitt gleicher Ordnung folgt (wie z. B. 4), wird er als zentrierter gleitender Durchschnitt der Ordnung 4 bezeichnet. Dies liegt daran, dass die Ergebnisse nun symmetrisch sind. Um zu sehen, dass dies der Fall ist, können wir die 2times4-MA wie folgt schreiben: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big amp frac y frac14y frac14y frac14y frac18y. Ende Es ist jetzt ein gewichteter Durchschnitt der Beobachtungen, aber er ist symmetrisch. Andere Kombinationen von gleitenden Durchschnitten sind ebenfalls möglich. Beispielsweise wird häufig ein 3times3-MA verwendet und besteht aus einem gleitenden Durchschnitt der Ordnung 3, gefolgt von einem anderen gleitenden Durchschnitt der Ordnung 3. Im allgemeinen sollte bei einer geraden Ordnung MA eine gerade Ordnung MA folgen, um sie symmetrisch zu machen. Ähnlich sollte eine ungerade Ordnung MA eine ungerade Ordnung MA folgen. Schätzung des Trendzyklus mit saisonalen Daten Die häufigste Verwendung von zentrierten Bewegungsdurchschnitten ist die Schätzung des Trendzyklus aus saisonalen Daten. Betrachten Sie die 2times4-MA: hat frac y frac14y frac14y frac14y frac18y. Bei der Anwendung auf vierteljährliche Daten wird jedes Quartal des Jahres gleiches Gewicht gegeben, wie die ersten und letzten Bedingungen für das gleiche Quartal in aufeinander folgenden Jahren gelten. Infolgedessen wird die saisonale Veränderung ausgemittelt und die resultierenden Werte von Hut t haben wenig oder keine saisonale Veränderung übrig. Ein ähnlicher Effekt würde mit einem 2 × 8-MA oder einem 2 × 12-MA erhalten werden. Im allgemeinen ist ein 2-mal m-MA äquivalent zu einem gewichteten gleitenden Durchschnitt der Ordnung m1, wobei alle Beobachtungen 1 m betragen, mit Ausnahme der ersten und letzten Glieder, die Gewichte 1 (2 m) nehmen. Also, wenn die saisonale Zeit ist gleichmäßig und der Ordnung m, verwenden Sie eine 2times m-MA, um den Trend-Zyklus zu schätzen. Wenn die saisonale Periode ungerade und der Ordnung m ist, verwenden Sie eine m-MA, um den Trendzyklus abzuschätzen. Insbesondere kann ein 2 × 12-MA verwendet werden, um den Trendzyklus der monatlichen Daten abzuschätzen, und ein 7-MA kann verwendet werden, um den Trendzyklus der Tagesdaten abzuschätzen. Andere Optionen für die Reihenfolge der MA wird in der Regel in Trend-Zyklus Schätzungen durch die Saisonalität in den Daten kontaminiert werden. Beispiel 6.2 Herstellung elektrischer Geräte Abbildung 6.9 zeigt ein 2times12-MA, das auf den Index der elektrischen Ausrüstung angewendet wird. Beachten Sie, dass die glatte Linie keine Saisonalität zeigt, ist sie nahezu identisch mit dem in Abbildung 6.2 gezeigten Trendzyklus, der mit einer viel anspruchsvolleren Methode geschätzt wurde als die gleitenden Durchschnittswerte. Jede andere Wahl für die Reihenfolge des gleitenden Durchschnitts (mit Ausnahme von 24, 36 usw.) hätte zu einer glatten Linie geführt, die einige saisonale Schwankungen zeigt. Plot 40 elecequip, ylab quotNew Aufträge indexquot. (Euroregion) 41 Zeilen 40 ma 40 elecequip, bestellen 12 41. col quotredquot 41 Gewichtete gleitende Mittelwerte Kombinationen gleitender Mittelwerte ergeben gewichtete gleitende Mittelwerte. Zum Beispiel ist das oben diskutierte 2x4-MA äquivalent zu einem gewichteten 5-MA mit Gewichten, die durch frac, frac, frac, frac, frac gegeben werden. Im allgemeinen kann ein gewichtetes m-MA als Hut t sum k aj y geschrieben werden, wobei k (m-1) 2 und die Gewichte durch a, dots, ak gegeben sind. Es ist wichtig, dass die Gewichte alle auf eins addieren und dass sie symmetrisch sind, so dass aj a. Der einfache m-MA ist ein Spezialfall, bei dem alle Gewichte gleich 1m sind. Ein großer Vorteil von gewichteten gleitenden Durchschnitten ist, dass sie eine glattere Schätzung des Trendzyklus ergeben. Anstelle von Beobachtungen, die die Berechnung bei Vollgewicht verlassen und verlassen, werden ihre Gewichte langsam erhöht und dann langsam verringert, was zu einer glatteren Kurve führt. Einige spezifische Sätze von Gewichten sind weit verbreitet. Einige davon sind in Tabelle 6.3 aufgeführt.

No comments:

Post a Comment