Dieses Forum scheint mehr auf mehr Programmierprobleme ausgerichtet zu sein, aber ich würde interessieren, wenn jemand die Logikausgabe in der untengenannten Verbindung betrachten würde. Mein Problem ist, wie die Berechnung der letzten 12 Monate insgesamt mit dem Kalender bereits definiert. Ich habe sehr wenige Beispiele für diese auf der QV-Community gefunden. Sehen Sie bitte den untengenannten Link für weitere Details. Ich wäre bereit, auf eine SQL oder eine QV-Skript-Lösung zu suchen. Unser Geschäftsjahr läuft von Nov bis Okt. Ich möchte den Endbenutzer wählen Jahr und ein Diagramm, um die letzte rollende 12 Monate Marge anzuzeigen. Ich habe Probleme bekommen meine Summe für die letzten Monate zu akkumulieren. Mein Ziel wäre für sie aussehen ähnlich wie die Rolling 12 Monate Summe - GP Spalte in der manuell caculated Excel image Ziel. (Blick auf QV-Link für Screenshots) Rolling Margin Gleichung: Mein Versuch, Set Analysis verwenden, um eine rollende avg Gleichung zu machen MasterCalendar: dies verwendet masterdate, um Elemente miteinander zu verbinden. FiscalCalander Dies definiert unser Geschäftsjahr Danke, dass Sie sich die Zeit genommen haben, sich diese Frage anzuschauen. Ich hoffe, dies enthält genug informationcontext ndash octopusguy Die Lösung ist nicht im Kalender. Müssen Sie eine Pivot-Tabelle zwischen Ihrem Kalender und der Faktentabelle erstellen. In dieser Pivot-Tabelle haben Sie 2 Typ. DIRECT und CROSSING. Für Typ DIRECT wird eine Zeile in der Faktentabelle mit dem Datum im Kalender verknüpft Für den Typ CROSSING wird eine Zeile in der Faktentabelle mit allen Terminen der 12 zukünftigen Monate im Kalender verknüpft. Also in Qlikview, verwenden Sie den Typ DIRECT die ganze Zeit, außer wenn Sie für jeden Monat die Summe der letzten 12 Monate präsentieren möchten. In diesem Fall verwenden Sie CROSSING, da alle Zeilen mit den Daten der 12 zukünftigen Monate verknüpft sind, dh es bedeutet (umgekehrte Sicht), dass ein Monat mit allen Daten der letzten 12 Monate verknüpft ist. Die beste Trendlinie für Ihre Daten auswählen Wenn Sie einem Diagramm in Microsoft Graph eine Trendlinie hinzufügen möchten, können Sie einen der sechs verschiedenen Trendregressionstypen auswählen. Die Art der Daten, die Sie festlegen, bestimmt die Art der Trendlinie, die Sie verwenden sollten. Trendline-Zuverlässigkeit Eine Trendlinie ist am zuverlässigsten, wenn ihr R-squared-Wert auf oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten passt, berechnet Graph automatisch seinen R-Quadrat-Wert. Wenn Sie möchten, können Sie diesen Wert in Ihrem Diagramm anzeigen. Eine lineare Trendlinie ist eine am besten passende gerade Linie, die mit einfachen linearen Datensätzen verwendet wird. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten einer Linie ähnelt. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Im folgenden Beispiel zeigt eine lineare Trendlinie deutlich, dass der Umsatz der Kühlschränke über einen Zeitraum von 13 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert 0.9036 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Eine logarithmische Trendlinie ist eine am besten passende gekrümmte Linie, die am nützlichsten ist, wenn die Änderungsrate der Daten schnell ansteigt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Das folgende Beispiel verwendet eine logarithmische Trendlinie, um das prognostizierte Bevölkerungswachstum von Tieren in einem festen Raum zu veranschaulichen, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,9407 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Eine Polynom-Trendlinie ist eine gekrümmte Linie, die verwendet wird, wenn Daten schwanken. Es eignet sich zum Beispiel für die Analyse von Gewinnen und Verlusten über einen großen Datensatz. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Eine Ordnung 2 Polynom-Trendlinie hat in der Regel nur einen Hügel oder Tal. Ordnung 3 hat im Allgemeinen ein oder zwei Hügel oder Täler. Auftrag 4 hat in der Regel bis zu drei. Das folgende Beispiel zeigt eine Polynomlinie der Ordnung 2 (ein Hügel), um die Beziehung zwischen Geschwindigkeit und Benzinverbrauch zu veranschaulichen. Beachten Sie, dass der R-Quadrat-Wert 0,9474 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Eine Leistungs-Trendlinie ist eine gekrümmte Linie, die am besten mit Datensätzen verwendet wird, die Messungen vergleichen, die mit einer spezifischen Rate zunehmen, zum Beispiel die Beschleunigung eines Rennwagens in Intervallen von einer Sekunde. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel werden Beschleunigungsdaten durch Zeichnen der Distanz in Metern pro Sekunde dargestellt. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,9923 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Eine exponentielle Trendlinie ist eine gekrümmte Linie, die am nützlichsten ist, wenn Datenwerte mit zunehmend höheren Raten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel wird eine exponentielle Trendlinie verwendet, um die abnehmende Menge an Kohlenstoff 14 in einem Objekt darzustellen, während es altert. Beachten Sie, dass der R-Quadrat-Wert 1 ist, dh die Linie passt perfekt zu den Daten. Eine gleitende durchschnittliche Trendlinie glättet Fluktuationen in Daten, um ein Muster oder einen Trend deutlicher zu zeigen. Eine gleitende durchschnittliche Trendlinie verwendet eine bestimmte Anzahl von Datenpunkten (die von der Option Periode festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Trendlinie. Wenn Period beispielsweise auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als der zweite Punkt in der Trendlinie verwendet, und so weiter. Im folgenden Beispiel zeigt eine gleitende durchschnittliche Trendlinie ein Muster in der Anzahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft werden. Hinzufügen eines Trends oder einer gleitenden Durchschnittszeile zu einem Diagramm Betrifft: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Zeigt Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm an. Können Sie eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorherzusagen. So prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für den zukünftigen Umsatz vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D Diagramm hinzufügen, das nicht gestapelt wird, einschließlich Bereich, Stab, Spalte, Linie, Vorrat, Streuung und Luftblase. Sie können keine Trendlinie zu einem gestapelten, 3-D-, Radar-, Kuchen-, Oberflächen - oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Klicken Sie in Ihrem Diagramm auf die Datenreihe, zu der Sie eine Trendlinie oder einen gleitenden Durchschnitt hinzufügen möchten. Die Trendlinie beginnt am ersten Datenpunkt der gewählten Datenreihe. Aktivieren Sie das Kontrollkästchen Trendline. Um einen anderen Trendlinienbereich zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Vorhersage. Oder Zwei Periodenbewegungsdurchschnitt. Klicken Sie für weitere Trendlinien auf Weitere Optionen. Wenn Sie Mehr Optionen wählen. Klicken Sie unter Trendlinienoptionen im Fenster "Trendlinie formatieren" auf die gewünschte Option. Wenn Sie Polynom wählen. Geben Sie die höchste Leistung für die unabhängige Variable im Feld Auftrag ein. Wenn Sie Moving Average wählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden, um den gleitenden Durchschnitt im Feld Zeitraum zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadratwert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie mit Ihren tatsächlichen Daten übereinstimmen) bei oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-Quadrat-Wert. Sie können diesen Wert in Ihrem Diagramm anzeigen, indem Sie den Wert "R-Quadrat anzeigen" im Diagrammfenster (Bereich "Trendlinie", "Trendlinienoptionen") anzeigen. In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Linie aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Eine lineare Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten Quadrate, die für eine Linie passen: wobei m die Steigung und b der Intercept ist. Die folgende lineare Trendlinie zeigt, dass die Verkäufe der Kühlschränke über einen Zeitraum von 8 Jahren kontinuierlich zugenommen haben. Beachten Sie, dass der R-squared-Wert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn die Rate der Änderung in den Daten schnell ansteigt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten quadratischen Anpassung durch Punkte: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das prognostizierte Bevölkerungswachstum von Tieren in einem festen Raum, wo die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Typischerweise hat eine Order-2-Polynom-Trendlinie nur einen Hügel oder ein Tal, eine Order 3 hat ein oder zwei Hügel oder Täler und eine Order 4 hat bis zu drei Hügeln oder Tälern. Eine polynomische oder krummlinige Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei b und Konstanten sind. Die folgende Polynom-Trendlinie (ein Hügel) der Ordnung 2 zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Linien eine gute Anpassung an die Daten aufweisen. Diese Trendlinie, die eine gekrümmte Linie darstellt, ist für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens im 1-Sekunden-Intervall. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine Leistungs-Trendlinie verwendet diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Distanzmesskarte zeigt den Abstand in Metern pro Sekunde an. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Diese Kurve zeigt eine gekrümmte Linie, wenn Datenwerte mit stetig steigenden Werten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, während es altert. Beachten Sie, dass der R-Quadrat-Wert 0.990 ist, was bedeutet, dass die Linie die Daten nahezu perfekt passt. Moving Average trendline Diese Trendlinie gleicht Schwankungen in den Daten aus, um ein Muster oder einen Trend deutlicher darzustellen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (die durch die Option "Periode" festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Zeile. Wenn beispielsweise Period auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie verwendet diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Reihe minus der Die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis sortieren Sie die x-Werte, bevor Sie einen gleitenden Durchschnitt hinzufügen. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Zahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft wurden.
No comments:
Post a Comment